[![image][1]][2] Привет, Хаброжители! Недавно у нас вышла первая русская книга о глубоком обучении от Сергея Николенко, Артура Кадурина и Екатерины Архангельской. Максимум объяснений, минимум кода, серьезный материал о машинном обучении и увлекательное изложение. Сейчас мы рассмотрим раздел «Граф вычислений и дифференцирование на нем» в котором вводятся основополагающее понятие для реализации алгоритмов обучения нейронных сетей.
Если у нас получится представить сложную функцию как композицию более простых, то мы сможем и эффективно вычислить ее производную по любой переменной, что и требуется для градиентного спуска. Самое удобное представление в виде композиции — это представление в виде графа вычислений. Граф вычислений — это граф, узлами которого являются функции (обычно достаточно простые, взятые из заранее фиксированного набора), а ребра связывают функции со своими аргументами.
[Читать дальше →][3]
[1]:
https://habrastorage.org/webt/tf/1x/nx/tf1xnxujxtd6ahnec8relkcdmrc.jpeg
[2]:
https://habrahabr.ru/company/piter/blog/346358/
[3]:
https://habrahabr.ru/post/346358/?utm_source=habrahabr&utm_medium=rss&utm_campaign=346358#habracut