Сегодня Яндекс выложил в open source собственную библиотеку CatBoost, разработанную с учетом многолетнего опыта компании в области машинного обучения. С ее помощью можно эффективно обучать модели на разнородных данных, в том числе таких, которые трудно представить в виде чисел (например, виды облаков или категории товаров). Исходный код, документация, бенчмарки и необходимые инструменты уже [опубликованы на GitHub][1] под лицензией Apache 2.0.
![][2]
CatBoost – это новый метод машинного обучения, основанный на градиентном бустинге. Он внедряется в Яндексе для решения задач ранжирования, предсказания и построения рекомендаций. Более того, он уже применяется в рамках сотрудничества с Европейской организацией по ядерным исследованиям (CERN) и промышленными клиентами Yandex Data Factory. Так чем же CatBoost отличается от других открытых аналогов? Почему бустинг, а не метод нейронных сетей? Как эта технология связана с уже известным Матрикснетом? И причем здесь котики? Сегодня мы ответим на все эти вопросы.
[Читать дальше →][3]
[1]:
https://github.com/catboost/catboost
[2]:
https://habrastorage.org/web/a70/0a8/d2a/a700a8d2a9c14cab94902dc57b03e27a.png
[3]:
https://habrahabr.ru/post/333522/?utm_source=habrahabr&utm_medium=rss&utm_campaign=feed_posts#habracut