_[Часть 1][1]_
#### Давай сразу код!
import numpy as np
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
alpha,hidden_dim = (0.5,4)
synapse_0 = 2*np.random.random((3,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,1)) - 1
for j in xrange(60000):
layer_1 = 1/(1+np.exp(-(np.dot(X,synapse_0))))
layer_2 = 1/(1+np.exp(-(np.dot(layer_1,synapse_1))))
layer_2_delta = (layer_2 - y)*(layer_2*(1-layer_2))
layer_1_delta = layer_2_delta.dot(synapse_1.T) * (layer_1 * (1-layer_1))
synapse_1 -= (alpha * layer_1.T.dot(layer_2_delta))
synapse_0 -= (alpha * X.T.dot(layer_1_delta))
#### Часть 1: Оптимизация
В первой части я описал основные принципы обратного распространения в простой нейросети. Сеть позволила нам померить, каким образом каждый из весов сети вносит свой вклад в ошибку. И это позволило нам менять веса при помощи другого алгоритма — градиентного спуска. Суть происходящего в том, что обратное распространение не вносит в работу сети оптимизацию. Оно перемещает неверную информацию с конца сети на все веса внутри, чтобы другой алгоритм уже смог оптимизировать эти веса так, чтобы они соответствовали нашим данным. Но в принципе, у нас в изобилии присутствуют и другие методы нелинейной оптимизации, которые мы можем использовать с обратным распространением: [Читать дальше →][2]
[1]:
http://habrahabr.ru/post/271563/
[2]:
http://habrahabr.ru/post/272679/#habracut